Inter-subband terahertz lasers using four-level asymmetric quantum wells. P. Kinsler, P. Harrison and R. W. Kelsall Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom. J. Appl. Phys. 85, 23-28 (1999). We demonstrate the potential for laser operation at far infrared wavelengths (30-300 {$\mu$}m, 1-10THz) by using inter-subband emission in four-level GaAs/AlGaAs asymmetric (stepped) quantum wells. Achieving population inversion in these devices depends critically on the lifetimes of the non-radiative inter-subband transitions, and so we have performed detailed calculations of electron--electron and electron--phonon scattering rates. Our four-subband structures show potential for the realization of room temperature lasing, unlike previously considered three-subband structures which did not give population inversions except at impractically low electron densities and temperatures. Auger-type electron--electron interactions involving the highly populated ground subband effectively destroyed the population inversion in three level systems, but in these four subband structures the inversion is maintained by strong phonon-mediated depopulation of the lower laser level. The largest population inversions are calculated at low temperatures ($< 30$K), but for the structures with higher emission energies, room temperature (300K) operation is also predicted. Email: Dr.Paul.Kinsler@physics.org