Testing quantum mechanics using third order correlations Paul Kinsler Department of Physics, University of Sheffield, Sheffield S3 7RH, United Kingdom. Phys. Rev. A 53, 2000 (1996). Semiclassical theories similar to stochastic electrodynamics are widely used in optics. The distinguishing feature of such theories is that the quantum uncertainty is represented by random statistical fluctuations. They can successfully predict some quantum mechanical phenomena --- for example, the squeezing of the quantum uncertainty in the parametric oscillator. However, since such theories are not equivalent to quantum mechanics, they will not always be useful. Complex number representations can be used to to exactly model the quantum uncertainty, but care has to be taken that approximations do not reduce the description to a hidden variable one. This paper helps show the limitations of "semiclassical theories", and helps show where a true quantum mechanical treatment needs to be used. Third order correlations are a test that provides a clear distinction between quantum and hidden variable theories in a way analogous to that provided by the 'all or nothing' GHZ test of local hidden variable theories. Email: Dr.Paul.Kinsler@physics.org